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Abstract

Background: Preterm birth is associated with abnormalities in growth, body composition, and metabolism during
childhood, but adult data are scarce and none exist for their offspring. We therefore aimed to examine body
composition and cardiovascular risk factors in adults born preterm and their children.
Methods: A cohort of 52 adults (aged 35.7 years, 54% female, 31 born preterm) and their term-born children (n=61,
aged 8.0 years, 54% female, 60% from a preterm parent) were studied. Auxology and body composition (whole-body
dual-energy X-ray absorptiometry) were measured, and fasting blood samples taken for metabolic and hormonal
assessments.
Results: Adults born preterm had greater abdominal adiposity, displaying more truncal fat (p=0.006) and higher
android to gynoid fat ratio (p=0.004). Although women born preterm and at term were of similar weight and BMI, men
born preterm (n=8) were on average 20 kg heavier (p=0.010) and of greater BMI (34.2 vs 28.4 kg/m2; p=0.021) than
men born at term (n=16). Adults born preterm also displayed a less favourable lipid profile, including lower HDL-C
concentrations (p=0.007) and greater total cholesterol to HDL-C ratio (p=0.047). Children of parents born preterm
tended to have more body fat than the children of parents born at term (21.3 vs 17.6%; p=0.055). Even after
adjustment for mean parental BMI, children of parents born preterm had altered fat distribution, with more truncal fat
(p=0.048) and greater android to gynoid fat ratio (p=0.009).
Conclusions: Adults born preterm, particularly men, have markedly increased fat mass and altered fat distribution. A
similar increase in abdominal adiposity was observed in the term born offspring of parents born preterm, indicating
that adverse outcomes associated with preterm birth may extend to the next generation.
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Introduction

Several studies have described metabolic abnormalities in
subjects born preterm (<37 weeks gestation), including
reduced insulin sensitivity [1-3], increased blood pressure [3-7],
and a greater risk of diabetes mellitus [8]. Preterm birth also
affects growth in childhood, and appears to alter the endocrine
regulation of postnatal growth in childhood and adolescence
[9]. Nonetheless, although children born preterm are usually
shorter than children born at term [9], they experience ongoing
catch-up growth during adolescence, so that final height is
usually appropriate for parental height [10]. Weight gain is also
initially abnormal, but unlike height, does not normalize with
age. Body composition is altered from early postnatal life, with

elevated fat mass and reduced lean mass by term-corrected
age [11]. Importantly, fat distribution is also altered, with
increased visceral and reduced subcutaneous fat compared
with healthy term neonates [12].

Longitudinal studies have evaluated postnatal growth and
weight gain in children born preterm, and related these findings
to size and measures of adiposity later in adolescence or early
adulthood [13,14]. However, body composition data in older
survivors of preterm birth are scarce. Two studies have
previously examined body composition in young adults born
very preterm (≤33 weeks gestation), observing increased total
body fat and greater abdominal adiposity [15,16].

Transmission of an environmentally acquired phenotype to
subsequent generations is well described in animal studies of
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nutritional deprivation [17], as well as in certain human cohorts
such as Dutch Famine survivors [18]. However, such inter-
generational transmission has not been documented in preterm
subjects. We therefore aimed to investigate body composition
and cardiovascular risk factors in adults in their mid-thirties who
were born preterm, and to determine whether any observed
changes were also present in their offspring.

Materials and Methods

Ethics approval
Ethics approval for this study was provided by the

Multiregion Ethics Committee (Ministry of Health, New
Zealand). Written informed consent was obtained from parents
or guardians, as well as verbal or written consent from each
child as was appropriate to their age.

Participants
The adults for this study (F1) were the offspring of mothers

(F0) from the Auckland Steroid Trial initially recruited between
1969-1974 [19] (Figure 1). This trial was the first to randomise
mothers at risk of preterm delivery (defined as being <37
weeks gestation by the last menstrual period, confirmed by
neonatal exam [19,20]) to receive either antenatal
betamethasone or placebo (n=1142); thus, their offspring
represent one of the oldest preterm cohorts in existence.
Importantly, the cohort is unique in that approximately one third
were born at term. Follow-up data from this cohort at a mean
age of 30.6 years have previously been reported, and did not
demonstrate any effects of antenatal steroid exposure on
anthropometry [5,20,21].

At the time of that 30-year follow-up, details were obtained
by questionnaire about subjects’ children (F2). We used these
details to recruit all singleton adults who had singleton
prepubertal children aged 5–10 years born at term (37–42
weeks gestation) (Figure 1). Adults were excluded if they were
living outside the Auckland region, had chronic illness, or used
medication known to affect insulin sensitivity. Children were
excluded if they were born preterm, had a birth weight below
the 10th percentile, had a first degree relative with diabetes, or
had clinical signs of puberty (Tanner stage 2 breast
development in girls and testicular volume >3 ml in boys
[22,23]) or adrenarche (defined as presence of pubic or axillary
hair), as these conditions may affect the outcome measures of
interest. Investigators performing the studies were blinded to
the perinatal characteristics of the participants.

Clinical assessments
All children were assessed at the Maurice & Agnes Paykel

Clinical Research Unit (Liggins Institute, University of
Auckland). Data on each participant were collected during a
single visit to the clinic. Neonatal parameters were recorded,
including birth weight and gestational age. Birth weight data
were transformed into standard deviation scores (SDS) [24].

Weight and height were recorded, and for the children,
weight and height of the parent not involved in the original
study were also recorded. Body composition was assessed

using whole-body dual-energy X-ray absorptiometry (DXA)
scans (Lunar ProdigyTM, GE Medical Systems, Wisconsin,
USA). Following an overnight fast, blood samples were taken
to measure plasma glucose, insulin, lipids, leptin, and cortisol
concentrations. Insulin sensitivity assessments using
hyperglycaemic clamps in the adults and intravenous glucose
tolerance tests and Bergman’s minimal model in the children
have been published previously [1]. Fasting insulin, glucose,
and the derived homeostasis model assessment of insulin
resistance (HOMA-IR) [25] are provided in this study.

Physical activity levels of all participants were assessed by
questionnaire, which reported weekly frequency, duration, and
intensity of exercise. Levels were graded as 0 (<30 minutes at
least 4 days/week), 1 (30–60 minutes at least 4 days/week), or
2 (>60 minutes at least 4 days/week). Food diaries were
collected for two working days and one weekend day for each
participant. Nutritional intake was estimated using standard
household measures, and food labels where appropriate.
Records were entered into Foodworks software (v5.0, Xyris
Software, Brisbane, Australia) by a trained investigator, and the
calculated mean daily caloric intake used for analysis.

Assays
Glucose and lipids were measured on a Hitachi 902

autoanalyser (Hitachi High Technologies Corporation, Tokyo,
Japan) by enzymatic colorimetric assay (Roche, Mannheim,
Germany). Insulin concentrations were measured using an
Abbott Imax (Abbott Laboratories, Abbott Park, USA), by
microparticle enzyme immunoassay. Leptin was measured with
commercially available enzyme-linked immunosorbent assays
(human leptin IRMA kit DSL-10-23100, intra-assay coefficient
of variation 4.4%, inter-assay coefficient of variation 4.9%).
Cortisol was measured by chemiluminescence using a Roche
(Indianapolis, IN, USA) E170 Modular laboratory analyser, with
an inter-assay coefficient of variation of 6%.

Statistical analyses
Potential differences between groups at baseline were tested

using one-way ANOVA or non-parametric Kruskal-Wallis, while
sex ratio and ethnic composition data were compared with
Fisher’s exact tests (all in Minitab v.16, Pennsylvania State
University, State College, PA, USA). All subsequence
multivariate analyses were performed in SAS v.9.3 (SAS
Institute Inc. Cary, NC, USA).

General linear regression models and random effect mixed
models were used to assess differences between groups.
Important confounding factors were adjusted for in the
analyses, including ethnicity, F0 steroid exposure, age, and
gender. For adult data (F1) small-for-gestational-age status was
also controlled for in the model, while for the offspring (F2) birth
weight SDS was included as a covariate. Other factors were
controlled for as required, depending on the outcome response
of interest: for lipids, hormones, and outcomes associated with
glucose homeostasis – BMI was included; and for
anthropometric data – the appropriate parental factor (e.g.
mean parental BMI). The interaction effects between group and
gender were tested in all models, and outcomes were
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assessed separately for males and females if there was
indication of a differential response between genders.

All statistical tests were two-tailed and maintained at a 5%
significance level. Age data are presented as means ±
standard deviations. Outcome data are presented as model-
adjusted means (estimated marginal means adjusted for the
confounding factors in the models), with associated 95%
confidence intervals. Overweight and obesity for adults were
defined as BMI 25–30 and ≥30 kg/m2, respectively.

Results

Adult (F1)
Of the 534 adult (F1) survivors previously traced at 30 years

of age, 461 were born from singleton pregnancies, 207 had
children aged 5–10 years, and 127 were living in the Auckland
region (Figure 1). Of this group, 98 were contactable, 19 were
excluded as a result of chronic illness, and 27 declined to
participate (Figure 1). Thus, we studied 52 adults aged 35.7 ±
1.2 years (range 33.4–38.0 years) who met the inclusion
criteria and agreed to participate. 31 participants were born

Figure 1.  Summary of study's recruitment.  
doi: 10.1371/journal.pone.0081840.g001
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preterm (Figure 1) with a mean gestational age of 33.3 weeks
(Table 1), including 8 participants born <32 weeks gestation
and the remaining 23 born 32–36 weeks. Adults born preterm
and at term were of similar birth weight SDS, age, sex ratio,
and ethnic composition (Table 1).

Overall, there were no significant differences in height,
weight, and BMI between adults born preterm and at term
(Table 2). However, while women born preterm and at term
were of similar weight and BMI, men born preterm (n=8) were
considerably heavier (109 vs 89 kg; p=0.010) and of greater
BMI (34.2 vs 28.4 kg/m2; p=0.021) than men born at term
(n=16) (Figure 2). Overall, 21/31 (68%) of adults born preterm
were overweight or obese compared to 11/21 (52%) of those
born at term (p=0.27). However, 39% (12/31) of adults born
preterm were obese, compared to 14% (3/21) of adults born at
term (p=0.049).

Both men and women born preterm had more body fat than
those born at term (p=0.011; Table 2). They also displayed
altered distribution of adipose tissue with increased abdominal
adiposity, namely more truncal fat (p=0.006) and higher
android to gynoid fat ratio (p=0.004) than adults born at term
(Table 2).

Consistent with their greater adiposity, adults born preterm
had leptin concentrations that were 21% higher than those born
at term (p=0.042; Table 2). Adults born preterm also displayed
a less favourable lipid profile, including lower HDL-C
concentrations (p=0.007) and greater total cholesterol to HDL-
C ratio (p=0.047; Table 2).

Children (F2)
We studied 61 children aged 8.0 ± 1.6 years (range 5.2–10.6

years), of whom 37 had a parent born preterm (Figure 1; Table
1). Children of parents born preterm and at term were of similar
birth weight SDS, age, sex ratio, and ethnic composition (Table
1). Interestingly, children of parents born preterm were born on
average 0.5 weeks earlier than children of parents born at term

Table 1. Baseline characteristics of adults (F1) and their
children (F2).

 Adults (F1) Offspring (F2)

 Preterm Term
Preterm
parent Term parents

n 31 21 37 24

F0 exposure to
antenatal steroids (n)

13 10 19 11

Gestational age
(weeks)

33.3 ± 2.2
39.7 ±
1.2****

39.7 ± 0.8 40.2 ± 0.7*

Birth weight SDS -0.24 ± 1.11 -0.67 ± 0.92 -0.19 ± 1.22 -0.24 ± 0.98

Age (years) 35.7 ± 1.3 35.7 ± 0.9 7.9 ± 1.6 8.2 ± 1.7

Sex ratio (males) 52% 38% 46% 63%

Ethnicity (New
Zealand European)

61% 67% 38% 58%

*p<0.01, ****p<0.0001 for Term vs Preterm. Where appropriate, data are means ±
standard deviations.
doi: 10.1371/journal.pone.0081840.t001

(p=0.039; Table 1), even though children born preterm had
been excluded from this study.

Children of parents born preterm were of similar height SDS
and BMI SDS as the offspring of parents born at term (Table
3), but children of preterm parents tended to have more body
fat (21.3 vs 17.6%; p=0.055). Further, even after adjustment for
mean parental BMI, children of preterm parents displayed
altered fat distribution, with greater truncal fat (p=0.048) and
android fat to gynoid fat ratio (p=0.009; Table 3).

Baseline cortisol concentrations were 27% higher in children
of parents born preterm (p=0.048; Table 3). However, leptin
concentrations, lipid profiles, and parameters of glucose
homeostasis were not different between groups (Table 3).
Physical activity levels and mean caloric intake were similar in
both groups (data not shown), and the gender of the parent
born preterm did not affect auxological parameters in the
offspring.

Table 2. Anthropometric and metabolic outcomes among
adults (F1) born preterm or at term.

  
Adults born
preterm

Adults born at
term p-value

n  31 21  

Anthropometry Height (cm)
170.0 (167.1–
172.9)

171.5 (167.9–
175.1)

0.44

 Weight (kg) †
88.0 (81.2–
95.4)

82.9 (75.1–
91.7)

0.28

 BMI (kg/m2) †
30.5 (28.3–
32.9)

28.3 (25.8–
31.0)

0.14

 Total body fat (%)
35.4 (32.0–
38.8)

29.4 (25.2–
33.6)

0.011

 Truncal fat (%)
38.3 (34.1–
42.5)

30.1 (25.0–
35.3)

0.006

 
Android fat to
gynoid fat ratio

1.09 (1.01–
1.16)

0.93 (0.83–
1.02)

0.004

Lipid profile
Total cholesterol
(mmol/l)

4.39 (3.97–
4.82)

4.65 (4.16–
5.13)

0.36

 HDL-C (mmol/l)
1.12 (0.98–
1.26)

1.38 (1.22–
1.54)

0.007

 LDL-C (mmol/l)
2.88 (2.48–
3.28)

3.04 (2.59–
3.50)

0.53

 
Total cholesterol
to HDL-C ratio

4.08 (3.58–
4.65)

3.40 (2.89–
3.98 )

0.047

Hormones &
glucose
homeostasis

HOMA-IR
1.37 (1.07–
1.74)

1.06 (0.80–
1.41)

0.11

 
Fasting insulin
(mIU/l)

6.51 (5.18–
8.18)

5.09 (3.91–
6.62)

0.10

 
Fasting glucose
(mg/dl)

4.74 (4.57–
4.91)

4.72 (4.52–
4.92)

0.87

 Leptin (ng/ml)
2.40 (2.08–
2.72)

1.98 (1.61–
2.35)

0.042

Data are means and 95% confidence intervals adjusted for other confounding

factors in the multivariate models. †parameters with a sex-dependant response.
doi: 10.1371/journal.pone.0081840.t002
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Discussion

This study shows that adults born preterm, particularly men,
have a marked increase in adiposity (mostly abdominal/truncal)
in mid-adult life. Further, the impact of preterm birth on

adiposity appears to extend to the following generation, as
children of parents born preterm displayed similar alterations in
fat distribution, with greater central adiposity.

Our study is consistent with previous longitudinal data in
young adults indicating greater adult adiposity in those born

Figure 2.  Weight and BMI in men and women (F1) who were born preterm (gray) or at term (black).  Data are means and 95%
confidence intervals adjusted for other confounding factors in the multivariate models.
doi: 10.1371/journal.pone.0081840.g002
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preterm [15,16]. Those studies showed subtle differences in
body composition in young adults born preterm. Thus, it
appears that total and abdominal adiposity are amplified with
increasing age, so that in our cohort nearly half of adults born
preterm were obese in mid-adulthood.

The increase in adiposity in men born preterm was
predominantly due to abdominal fat, and it was associated with
lower HDL-C concentrations. Further, our recent analysis of
insulin sensitivity in this cohort also showed that adults born
preterm had higher fasting insulin concentrations and reduced
insulin sensitivity [1]. These features combined are hallmarks of
the metabolic syndrome, characterized primarily by marked
abdominal/visceral adiposity, fasting hyperglycaemia,
hypertension, and dyslipidemia [26].

As in other at-risk groups (such as those born small-for-
gestational-age), men born preterm appear more susceptible
than women to developing this phenotype as shown by the

Table 3. Offspring (F2) of parents who were born preterm or
at term.

  

Children of
parent born
preterm

Children of
parents born at
term p-value

n  37 24  

Anthropometry Height SDS
0.51 (0.01–
1.01)

0.54 (0.02–
1.07)

0.90

 BMI SDS
0.26 (-0.22–
0.75)

0.38 (-0.13–
0.90)

0.65

 Total body fat (%)
19.3 (16.3–
22.8)

17.2 (14.3–
20.7)

0.22

 Truncal fat (%)
15.8 (13.6–
18.4)

12.3 (10.1–
15.1)

0.048

 
Android fat to
gynoid fat ratio

0.71 (0.63–
0.81)

0.60 (0.52–
0.68)

0.009

Lipid profile
Total cholesterol
(mmol/l)

3.87 (3.47–
4.28)

3.87 (3.45–
4.28)

0.98

 HDL-C (mmol/l)
1.29 (1.13–
1.44)

1.37 (1.21–
1.54)

0.35

 LDL-C (mmol/l)
2.41 (2.07–
2.75)

2.30 (1.95–
2.65)

0.55

 
Total cholesterol
to HDL-C ratio

3.00 (2.71–
3.29)

2.83 (2.52–
3.15)

0.35

Hormones &
glucose
homeostasis

HOMA-IR
1.02 (0.66–
1.37)

1.31 (0.93–
1.69)

0.13

 
Fasting insulin
(mIU/l)

4.62 (3.18–
6.06)

5.86 (4.32–
7.41)

0.12

 
Fasting glucose
(mg/dl)

4.74 (4.49–
5.00)

4.89 (4.62–
5.16)

0.33

 
Baseline cortisol
(nmol/l)

220 (177–
273)

173 (137–
219)

0.048

 Leptin (ng/ml)
4.52 (3.25–
6.31)

4.11 (2.89–
5.84)

0.61

Data are means and 95% confidence intervals adjusted for other confounding
factors in the multivariate models.
doi: 10.1371/journal.pone.0081840.t003

observed differences in weight and BMI. This sexual
dimorphism is consistent with data from maternal undernutrition
studies [27,28]. A study in the Philippines for example, showed
an inverse association between maternal protein intake during
pregnancy and blood pressure in male but not female offspring
in adolescence [29]. While the underlying mechanisms are still
poorly understood, the placenta has been recently suggested
to play a key role [30]. Oestrogen may also have an important
role, and one study suggested that this hormone was a primary
factor normalizing blood pressure in adult female rats that were
growth-restricted in utero [31]. In our study, it is possible that
this male susceptibility to the metabolic syndrome may be
associated with a greater capacity of males to store fat and
maintain body weight in response to the adverse environment
associated with preterm birth (both in utero and post-natally).
Nonetheless, although the mechanisms underpinning worse
outcomes among those born preterm are yet to be determined,
our study shows that preterm birth is associated with adverse
changes to body composition and metabolic parameters in
adulthood.

Importantly, we also showed that preterm birth is associated
with an adverse phenotype in the next generation. The
offspring of parents born preterm tended to have greater fat
mass than those of parents born at term, reflecting the effect of
parental obesity. Fatter parents tended to have fatter children
irrespective of whether the preterm parent studied was male or
female. However, even when mean parental BMI was taken
into account, alterations in fat distribution were still evident
amongst children of parents born preterm, suggesting that
parental fat mass did not entirely explain the effect of parental
preterm birth on offspring adiposity.

Intergenerational effects have been observed in animal
models [17], particularly in the development of diabetes [32].
Such effects also occur in humans, and prenatal exposure to
the Dutch Famine led to transgenerational effects on neonatal
adiposity and health in later life [33]. More recently, a Finnish
study on nearly 5,000 children provided strong evidence for the
intergenerational transmission of obesity [34]. The mechanisms
behind this intergenerational transmission of an obese
phenotype to the offspring of parents born preterm are unclear,
but environmental effects leading to heritable epigenetic
changes (and consequent alterations in gene expression) are
well described [27,35].

Preterm birth is not uncommon, and more than 10% of
babies worldwide are born less than 37 weeks gestation [36].
Although metabolic and growth abnormalities have been
consistently demonstrated in individuals born less than 32
weeks gestation [2,37], these babies comprise only 1.5% of all
births. It was unclear whether similar abnormalities occurred in
most preterm babies, i.e. those born with a lesser degree of
prematurity (32–37 weeks gestation). In our study only 25% of
the preterm adults were born before 32 weeks gestation, and
our findings suggest that all preterm survivors (i.e. >10% of all
births) may suffer long-term adverse health effects.

The intergenerational effect of preterm birth is well
established, and mothers who were born preterm are also
more likely to have preterm deliveries [38]. Although fathers
seem to contribute to this risk as well, the effect appears to be
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smaller [39]. In the current study, we showed that both
maternal and paternal preterm births result in an earlier age of
delivery, even though births <37 weeks gestation had been
excluded. It therefore appears that earlier birth could be an
inherited trait, one that is epigenetically modified, or a
combination of both. Unfortunately, no follow-up data are
available for more than two generations, making further
conclusions difficult. However, given the changes in the
metabolic status of adults born preterm as they age and the
body composition alterations observed in their offspring, it is
tempting to speculate that both maternal and paternal
epigenetic changes may be altering gestation in future
generations.

In conclusion, preterm birth is associated with increased fat
mass and altered fat distribution in adulthood, particularly
among men, as well as evidence of insulin resistance and less
favourable lipid profiles. Importantly, similar changes in body
composition are also present in mid-childhood in their offspring
born at term, showing that the negative consequences of

preterm birth may extend to the subsequent generation. The
changes in body composition observed in this group suggest
ongoing longitudinal studies will be necessary to define the
health relevance of preterm birth for future generations.
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